

RECOGNISING ACHIEVEMENT

Oxford Cambridge and RSA Examinations

ADVANCED GCE
ADVANCED SUBSIDIARY GCE

A2 7888 AS 3888

PHYSICS B (ADVANCING PHYSICS)

MARK SCHEME FOR THE UNITS
JANUARY 2004

AS/A2

3888/7888/MS/04J

Mark Scheme 2860 January 2004

words which are not essential to gain credit	conventions used in the	= (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording
--	-------------------------	---

Qn	ora = or reverse argument Expected Answers	Marks	Additional guidance
1a;b	Section A V; Cs ⁻¹	2	
2a;	32;	1	
bi;	(samples/sec x bytes/sample x time) / 44.1 x 10 ³ x 4 x 150 method ; = 26.4(6) Mbytes ; eval.	2	allow 25.2(3) Mbytes pc correct eval. scores 2
ii	(data) compression / fewer samples/sec / fewer bytes/sample / reduce quality / AW	1	other sensible comments NOT filtering
3 a;b;c	metal ; rubber ; glass	3	
4a;b c	0.13(0) m ; 8.33 / 8.3 ; ± 0.3 / 0.4 D ecf on (b)	1	accept 0.33 or 0.31 or 0.32 or 0.34
5ai;ii bi ;	50 mV	2 1 1	NOT 7 accept 100 mV NOT greater sampling
ii	more (than 3) bits (per sample) / more levels / better voltage resolution AW		rate
6ai;ii	x¼; x2	2	
7		1	zero marks for no attempt In col. 1 accept 2/3/4 bass bars
	more bass less treble	1	In col.5 expect 0 treble bars / OR (accept 0/1 bars in col. 4)
-	Section A tota	1 20	

Qn	Expected Answers	Marks	Additional guidance
	Section B	-	L 20
8a	decreases / falls / drops ; 100 (± 10) ; low(er) / 22 °C	3	"30 to 40°C" / (value in range) 20 - 30 °C
bi	connections in parallel with fixed resistor	1	
ii	$R_{Thermistor} = 100 \text{ to } 105 (\Omega)$;	1 1	evidence from graph
	$R_{Total} = 200 + R_{Thermistor} (\Omega)$;	1 1	total resistance
101	$I = (V/R_{Total}) = 6/R_{Total}$ (= 0.02 A)	1	substitution ora ecf R from b(ii)
iii	(V = 1 R = 0.02 x 200) = 4.0 V		accept 4 V
ci ;	X ;	1 1	NOT III - III - I - I - I - II - II - I
ii	advantage (near) constant sensitivity / linear (output)		NOT "just" straight line allow AW or other
	disadvantage less sensitive (over most of range) / range of voltages is small / battery lasts for less time	1	sensible quality physics
9a	$\lambda = v/f$; = 1500/8000; = 0.19 m	3	allow v = fλ recall
26	ora $v = 1600 \text{ m s}^{-1}$ is about 1500 m s ⁻¹ full marks		1 st mark
b	t = s/v / = 5000 / 1500 ; = 3.3 s	2	2 marks correct answer
С	t = info/rate / = (1500 x 8) / 2400 ; = 5.0 s	2	words / numbers ; allow 1 mark for 0.63s
d	1/2/3 style look for: time delay, live video needs larger	3	2040 10000000000000000000000000000000000
-7.	info rate, large amount of information,		AW if good physics
	still pictures can be slowly built up, stored at receiving		NOT "it" is too slow
	computer		expect quality reasons
	CESOLARS SE		for the 3 nd mark
10a	brittle: shatters (on impact) / cracks (propagate) /	1	AW for all these
	no plastic region ;		or other correct physics
	hard: difficult to scratch / dent;	1	NOT leave violat street
	strong: large breaking stress ;	1 1	NOT large yield stress accept not brittle IF
	tough: difficult to crack / large energy to break / create new surface		brittle correct OR v.v.
bi	x 4 / much tougher ;	1	NOT just tougher
ii	(toughness is) energy ; per (new surface) area ;	2	
ci ; ii	B ; tougher than A / less tough than C /	2	one correct reason or
S	stronger than A / less strong than C /		any combination / other
	about ¾ of the strength of C		correct physics
11a	to reflect light back / up ; to increase illumination	2	AW
	a the second of the second of the second of	_	2
b	P = 1/f OR = $1/v - 1/u$; = $1/0.4 - 1/(-0.1)$; = $2.5 + 10 = 12.5$; D	2 2	3 marks correct value 1 mark for unit D
	= 2.5 + 10 = 12.5 , D	-	T III al K TOT UTILL D
c	transparency ; to allow light to transmit /	2	AW
8	high refractive index ; to allow thinner lens /	2 2	allow all sensible
	high melting point ; to withstand temperature /		physics answers with
	low density ; to reduce weight of lens /		correct explanation
	strong / tough / hard / stiff etc ; correct reasoning		NOT economics
	Total B	40	
	iotal B	40	

Qn	Expected Answers	Marks	Additional guidance
- Mille	Section C		
12ai ij	student choice sets appropriate context – no marks any shape of constant cross section ;	0	
iii	(good conductor) : long / thin for measurable R / G / (low E) : short / "fat" for measurable extension / constant cross-sectional area	1	
iv	Two sensible lab estimates: length; diameter / width / thickness / area	2	
V	Micrometer / Vernier caliper / (travelling) microscope ; justification - need greater precision (accept accuracy)	1 1	allow rulers down to 10mm
bi	A practical difficulty identified e.g. very small extension in stiff material / small resistance in a good conductor	1	accept other sensible suggestions and
li	solution to difficulty – long specimen; more relevant detail – repeat readings / averaging	1	solutions
ci	For Y expect force ; extension / for σ expect p.d. ; current / Resistance	2	accept standard symbols R = V/I
ii	Correct words / symbols ; combined correctly e.g. $Y = FI/Ae$ / $\sigma = II/VA$	2	accept a complete set of equations
13a	imaging system example; e.g. satellite imaging system; 3 obs: e.g. cloud cover; sea temperature; land use	1 3	expect descriptions
bi ii	waves / radiation : infra-red ; how data obtained: e.g. low polar orbit covers whole Earth in 1/2 day	1 3	1/2/3 style full marks for well annotated diagram
	satellite scans Earth building up infra-red images		annotated diagram
	infra-red energy detected by photodiode which gives a p.d. in proportion to pixel value on image		
ci ii	resolution is length represented on object / pixel; NOT the number of pixels 5 km on Earth / pixel; UP	1	AW e.g. smallest resolvable detail allow ± 1 order of mag.
ď	false colour could be added to image, infra-red has no colour, but pixel value ranges can be given colour to represent intensity. This makes images easier to interpret.	3	1/2/3 style give credit for connecting physics
of NC	Total C	<u>4</u> 30	

Mark Scheme 2861 January 2004

Qn	Expected Answers	Marks	Additional guidance
1 (a)	600 ✓	1	-
(b)	60 🗸	1	
(c)	0.6 🗸	1	
2(a)	g.p.e. to k.e. ✓	1	
(b)(i)	$v^2 = 2 \times 9.8 \times 2.8 \checkmark v = 7.4 \text{ (m s}^{-1}) \checkmark$ (g = 10 gives 7.48)	2	By energy change or by suvat
(ii)	neglecting/negligible/no air resistance ✓ (all gpe goes to ke) (constant 'a' if suvat approach)	1	not wind resistance
3(a)	representation of 3 fringes minimum ✓ equispaced peaks ✓ (4 needed)	2	intensity variation is fine
(b)	fringes further apart ✓	1	
4 (a)	$f = (3 \times 10^8) / 1500 \ \ \ \ \ \ \ \ = 2.0 \times 10^5 \ (Hz) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2	
(b)	method mark $(2.4 \times 10^{17}) / (2.0 \times 10^{5}) \checkmark_{m} = 1.2 \times 10^{12} \checkmark_{e}$ ecf from (a)	2	not 1.2E12 /1.2 ¹²
5(a)	horizontal = 300 cos 50° = 192.8 ✓ _m	1	
(b)	P = (horizontal component from (a)) x 0.6 ✓ _m So P = 116 (120) (W) ✓ _e (120 W from F = 200 N)	2	penalise using wrong F
6(a)	phasor arrow pointing to S.E. ✓	1	
(b)	same amplitude and wavelength ✓ 180° phase diff ✓	2	minimum of 1 cycle
	total	20	

7(a) (i)	destructively interfering ✓	1	phasors antiphase / waves out of phase
(ii)	mention path difference ✓ λ/2 idea ✓	2	phasors cancel resultant phasor = 0 so
(iii)	* (LOOK AT (a)(i) and (ii) together) idea that 2 amplitudes different ✓ cause (absorption) or effect not complete cancelling ✓ (others possible)	2	probability=0 or AW not quite out of phase = 0
(b)	white = many colours ✓ green not reflected ✓ other wavelengths give the purple colour ✓	3	not purple light reflected
(c)	brighter/ greater contrast/ more focused /greener ✓ explained ✓	2	
	total	10	
8 (a)(i)	One loop ✓ nodes and antinodes labelled ✓	2	
(ii)	0.8 (m) ✓ ecf from (a)(i)	1	
(iii)	= 440 x 0.8 ✓ = 352 (m s ⁻¹) ✓ ecf from (a)(ii)	2	
(b)	N = kg m s ⁻² ✓ for coherent development✓	2	
(c)(i)	different mass per unit length (thickness/density) ✓ thicker string lowest note ✓	2	
(ii)	equal force on neck/ won't distort instrument/ easier to bow ✓ or other mechanical reason	1	
	total	10	
9 (a)(i)	constant speed ✓ equal distance in equal times ✓	2	or no forces acting horizontally
(ii)	accelerating ✓ increasing distances in equal times ✓	2	or gravity is acting vertically
(b)(i)	$t = x/v \checkmark so t^2 = x^2/v^2 \checkmark$	2	$t^2 = x^2/v^2 2 \text{ marks}$
(ii)	$y = \frac{1}{2}gt^2$ rearranged \checkmark to give $t^2 = 2y/g$	1	
(iii)	$x^2/v^2 = 2y/g$ rearranged \checkmark to give $v^2 = x^2g/2y$	1	
(c)	$v^2 = ((4.0)^2 \times 9.8)/(2 \times 1.5) \ \checkmark = 52 \ (52.27)$ $v = 7.2 \ \checkmark \ (m s^{-1}) \ 3 \text{ s.f. max}$	2	
	total	10	

10 (a)(i)	arrow backwards ✓ labelled 'drag' / air or wind resistance (not just 'friction') ✓	2	through common point, drawn on the aircraft
(ii)	thrust = drag ✓ lift = weight ✓ forces must be 'balanced' idea/ no acceleration ✓	3	
(b)(i)	appropriate velocity vector arrows to scale ✓ to match Fig. 10.1	1	must have arrows
(ii) 1	method mark ✓ 11 m s ⁻¹ (10.8) ✓ (10.5 to 11.5 by diag)	2	by Pythagoras or measurement
(ii) 2	method mark ✓ 21.8° ✓ (20° to 25° by diag)	2	by trig or measurement
	total	10	
11 (a)(i)	clear statement of measurement ✓	1	
(ii)	sensible estimate with unit ✓ (check for appropriateness)	1	UP
(b)(i)	diagram labelled - could be set up ✓✓✓ some errors or omissions ✓✓	3/2/1	
(ii)	radiation sent out ✓ pulse ✓ reflected and received ✓	4	what would need to be done in this case
(c)(i)	time delay measured/recorded ✓ s = vt ✓ stating specifically what v represents here ✓ time delay halved ✓	3	addressed (prose) depends on example selected (analysis)
(ii)	for 2 relevant sources of error ✓✓	2	or 1 factor and the consequence
	total	14	
12 (a)	For a situation where a quantum phenomenon is observed	1	if not a quantum phenomenon zero marks total
(b)	clear labelled diagram ✓✓✓ with some minor omissions or errors ✓✓ for some attempt made ✓	3/2/1	
(c)	for four separate relevant and correct items of description	4	
(d)	read as a whole upto 4 marks for relevant quantum ideas 🗸 🗸 🗸	4	
	total	12	
Qo WC	1411	4	Judged solely on written communication in questions 11 and 12

Mark Scheme 2863/1 January 2004

20

Section A total

Abbreviation annotation convention Mark Sche	s and is used in the	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected A	nswers	Mark
1 (a) (b)	N ×		1
2		= 3.5x 10 ⁴ / 0.21 x 4200 ✓ = 40 ° c (39.7 ° c) ✓ ture = 40 + 20 = 60 ° c ✓ (59.7 ° c) marking points 'stand alone'	3
3 (a)	Q = CV < ->	E = 1/2 CV + V ✓ = 1/2 CV ²	2
(b)	Graph starting	g at 0,0 ✓ and curving upwards ✓	2
4 (a)	e.g. galaxies	receding/ (cosmological) redshift, Hubble's Law ✓	1
(b)	(accept remna	Universe, e.g.: microwave radiation remnant of era of recombination ant of 'big bang') ✓ present distribution reflects earlier distribution ✓ by large scale anisotropy in early universe would be reflected in variation ✓ AW)	2 on
5 (a)		$V = nRT/p = 1 \times 8.31 \times 300/1.0 \times 10^5 $ ≤ =0.0249 m ³ kwards or use pV = NkT)	2
(b)	1.0 x 10 ⁵ x 0 candidates ca	$.025 = p_2 \times 0.020 \checkmark p_2 = 1.3 \times 10^5 \text{ Pa} \checkmark (accept 1.25 \times 10^5)$ in use their answer to 5 (a) (ecf) (e.g. 1.2 x 10^5 if 0.0249 used).	2
6 (a) (b)	$I = 1.1 \times 10^{-3}$	6 x 10 ³ ✓= 1.1 x 10 ⁻³ A = (about) 1 mA ✓ x e ⁻¹ = 1.1 x 10 ⁻³ x 0.37 ✓= 0.4 mA ✓ (accept rule of thumb third, answer	
(=)		answers using decay equation)	2

7 (a) (i)	Max depth = 15m ✓	1
(a) (ii)	Amplitude = 5 m ✓	1
(a) (iii)	Gradient at t = 6 hours ✓ correct reading from graph ✓ answer worked to 3.0 m hr ⁻¹ ✓ (answers in range 2.5 m hr ⁻¹ to 3.5 m hr ⁻¹)	3
(b)	time period from graph = 12.5 hrs $\checkmark f = 1/T = 1/12.5 \checkmark = 0.080 \text{ hr}^{-1} \checkmark$	3
(c)	shading or lines drawn on graph ✓answer in range of 15.5 hrs to 16.5 hrs ✓	2
(d)	d = 10 + 5 sin $(2\pi \sin 0.080 \circ 9.5)$ \checkmark = 5.0 m \checkmark (allow ecf from a(ii) and b) or sin varies between +1 and -1 \checkmark so lowest value is 10 - A (this allows incorrect value for A to ecf) \checkmark	2
8 (a)(i)	$\Delta p = 280 \times 55 - 280 \times 0 \checkmark = 15400 \checkmark \text{ kg ms}^{-1} \checkmark$	3
(a) (ii)	f = ma = 280 x (55/0.25) ✓ = 61600 N ✓ (or use F = mv -mu)	2
a(iii)	argue from Newton 3 or conservation of momentum leading to a force on the plane ✓ this makes the plane move down ✓ (as plane is much more massive so	2
	acceleration/movement much less than that of the pilot). (Accept plane won't move because its on the ground for second mark)	3
(b)	$1/2 mv^2 = mg\Delta h \checkmark \Delta h = v^2 / 2g = 55^2 / 19.6 \checkmark = 154 m \checkmark S.F. penalty.$ Or suitable equation of motion chosen \checkmark values substituted \checkmark evaluation \checkmark	
(c)	Collisions between pilot and particles ✓ momentum/ direction/ velocity change of particles during collision ✓ change of momentum of particles exerts force on pilot. ✓	3
9 (a)	250 x 50 = 12500 J 🗸	1
(b)	number of molecules = $5 \times 6.02 \times 10^{23} / 18 \checkmark = 1.67 \times 10^{23} \checkmark$	2
(c)	$E = 12500/1.7 \times 10^{23} \checkmark = 7.35 \times 10^{-20} \checkmark \text{ J (or } 7.48 \times 10^{-20} \text{ if } 1.67 \times 10^{23} \text{ used)}$	2
(d)	$kT = 1.4 \times 10^{-23} \times 373 = 5.2 \times 10^{-21} \text{ J}$	1
(e) (i)	$5.2 \times 10^{-21} / 7.5 \times 10^{-20} = 0.07 \checkmark . \text{ (ecf)}$	1
(ii)	Argument from average energy✓ explanation of why there is a range of energies e.g. molecular collisions or 'getting lucky' ✓ (or Boltzmann arguments)	2

 $V_{grav} = -6.67 \times 10^{-11} \times 5.98 \times 10^{24} / 6.38 \times 10^{6} \checkmark = -6.252 \times 10^{7} \checkmark \text{J kg}^{-1}$ 2 10 (a) (i) Own value needed. Calculating $V_{\text{grav}} = -6.27 \times 10^7 \text{ y J kg}^{-1}$ using this to give ratio 6.27/6.25 = 1.003(2) y2 (a) (ii) Own value needed. Gravity is always attractive (AW) ✓ hence it always takes energy/work to separate 2 a(iii) gravitationally bound masses. At infinity the energy 'stored' is zero therefore an object in a field will be in a potential well. < (AW) $g=(-)GM/r^2 \checkmark$ 1 (b) $g = -6.67 \times 10^{-11} \times 5.98 \times 10^{24} / (6.36 \times 10^{6})^{2} \checkmark = 9.86 \checkmark \text{ N kg}^{-1} \checkmark$ 3 (c) (i) 2 Value for potential depends on r whereas field strength depends on r2. ✓ Hence field (ii) strength more sensitive to changes in r ✓ or evaluate ratio ✓ (OWTTE) QWC marks on questions 8 a(iii), 8 (c), 9 e (ii) 4

Section B total: 50 marks

Mark Scheme 2864/1 January 2004

1	s-1	1
2	A	1
3	103	1
4 (a)	A	1
4 (b)	E is electric field (strength) / force on unit charge	1
5 (a)	at right angles to equipotential through the point (by eye) pointing away from sphere ACCEPT curved field lines which have the correct direction at X sphere plate	1 1
5 (b)	0 V	1
6	A C	1

7(a)	В	1
7(b)	C	1
8	higher energy level standing wave to fit potential well more than two antinodes energy distance from centre	1 1 1
0/21	potential energy standing wave	
9 (a)	as shown, by eye	1
9 (b)	total binding energy = $56 \times 8.8 \times 10^6 = 4.93 \times 10^8$ eV ecf incorrect eV: energy = $4.93 \times 10^8 \times 1.6 \times 10^{-19} = 7.9 \times 10^{-11}$ J (steps clearly shown to earn marks)	1
(c)	$E = mc^2$ ecf incorrect E: $m = E/c^2 = 7.9 \times 10^{-11}/9 \times 10^{16}$	1
	$m = 8.8 \times 10^{-28} \text{ kg}$ $(1 \times 10^{-10} \text{ J gives } 1 \times 10^{-27} \text{ kg})$	1

10 (a) (i)	*	1
	S N	
10 (a)(ii)	Any complete loop which does not cross the other loops joins N to S	1
10 (b)	substitution; 1.2×10 ⁻³ /0.25 answer: 4.8×10 ⁻³ V	1
10 (c)(i)	correct period and sinusoidal shape, any amplitude average value of zero correct phase (accept 90° ahead or behind)	1 1 1
	time	
10 (c)(ii)	Description: any two of the following, 1 mark each wind more turns on the coil use a stronger magnet increase the area of the turns decrease the air gap between the poles wind coil on an iron former mechanical arrangement (e.g. lever) to increase displacement	2
	Explanation: each modification increases flux linkage (change) of the coil	1

11 (a)	Q = ne (eor) $n = 8 \times 10^{-10} / 1.6 \times 10^{-19} = 5.0 \times 10^{9}$	1		
11 (b)(i)	positive EITHER	0		
	so that right-hand plate becomes positively charged repelling positive charge on drop OR	1		
	left-hand plate becomes negatively charged to attract positive charge on the drop OR			
	potential decreases as drop moves to the left resulting in drop gaining KE as it moves that way			
11 (b)(ii)	horizontal lines equally spaced (accept correct edge-effects) arrow to the left	1 1 1		
	ink drop metal plate metal plate			
	av o			
14 (-)(1)		1		
11 (c)(i)	statement of formula: $E = V/d$ elimination of E to obtain required expression accept formula $E = V/d$ derived from expression for [2] accept $F = QV/d$ for [1]			
11 (c)(ii)	correct substitution of powers of 10 ecf incorrect powers of ten:	1		
	$V = \frac{Fd}{Q} = \frac{3.6 \times 10^{-6} \times 15 \times 10^{-2}}{0.8 \times 10^{-9}} = 675 \text{ V (accept 680 V)}$	1		

	1	- 1
2 (a)(i)	number of X-rays = 120 ecf: total dose equivalent = $120 \times 16 \times 10^{-6} = 1.9 \times 10^{-3}$ Sv	1
	ecf:risk = 1.9×10 ⁻³ × 3 = 0.0058 %	1
2 (a)(ii)	cancers = 0.0058 × 55×10 ⁶ / 100 = 3200	1
	(0.006% gives 3300)	
2 (a)(iiii)	[1] + [1] per valid statement backed by correct calculation, up to [4] No ecf: e.g.	4
	annual dose equivalent from X-rays is 32 µSv	lv.
	32/2000 = 0.016 of dose equivalent from background (ora)	
	risk of background is unavoidable (owtte)	
	 and will lead to 2×10⁻³ × 60 × 0.03 × 55×10⁶ = 200 000 cancers 	
	lifetime X-ray dose similar to annual background dose	
	so any cancer is much less likely to come from X-ray (ora)	1
	SS2	1
12 (b)(i)	proposal:	1
La L	d.e. × distance ² = constant shown clearly	2
V	calculations: -1 per error, maximum -2 2.6×10 ⁻⁶ × 0.25 ² = 0.163 (×10 ⁻⁶)	4
	$0.95 \times 10^{-6} \times 0.41^2 = 0.160 (\times 10^{-6})$	1
	$0.95 \times 10^{-6} \times 0.77^2 = 0.160 (\times 10^{-6})$	1
	in the second se	2
12 (b)(ii)	any of the following, maximum [2]	
SV254	 X-ray emitter acts as a point source (owtte) photons spread out evenly in all directions/in a cone 	
	V shotone not absorbed by all	10
1	dans aguivalent depends on photons per square mene (owite)	1
	dose equivalent depends on photons to pass through doubling distance quadruples area for photons to pass through (owtte)	
12 (b)(iii)	dose equivalent per X-ray = 0.2×10-3/4000 = 5×10-8 Sv	1
12 (D)(III)	X -ray dose equivalent = $0.16 \times 10^{-6}/x^2$	4
	$x = (0.16 \times 10^{-6}/5 \times 10^{-8})^{0.5} = 1.8 \text{ m}$	3

	Quality of Written Communication	4
13 (c)(ii)	vacuum means no collisions with air molecules (owtte) to alter velocity / charge of ions which would result in a different path in magnetic field	1 1 1
	to pump region	
13 (c)(i)	beam of UF ₆ ions	1
	+5kV 0 V	
13 (b)(ii)	pair of electrodes / colinear tubes 5 kV apart ions move from high potential to low potential	1 1 1
	(potential) energy = charge × potential (owtte) OR charged particles repelled / attracted by charges on electrodes	
13 (b)(i)	EITHER (accelerating) force = charge × electric field (owtte) OR	1
13 (a)(ii)	$m = (235 + 6 \times 19) = 349u$ ecf incorrect m : mass = $349 \times 1.7 \times 10^{-27} = 5.9 \times 10^{-25}$ kg (NOT 6×10^{-25}) (235 u gives 4.0×10^{-25} kg)	1
13 (a)(i)	+4.8×10 ⁻¹⁹ C	1

Mark Scheme 2865 January 2004

Abbreviations, annotations and conventions used in the Mark Scheme	m s e / NOT () ecf AW ora	= method mark = substitution mark = evaluation mark = alternative and acceptable ansu = separates marking points = answers which are not worthy of the words which are not essential to the control of the words which are not essential to the control of the words which are not essential to the control of the words which are not essential to the	of credit	dit
- I			Marks	Additional guidance

Qn	Expected Answers	Marks	Additional guidance
1 (a)	Any long random linear molecular structure ✓	1	Chemical type chains OK, or just zigzags
(b)	 (i) Not brittle/doesn't crack/deforms before breaking/ absorbs energy on breaking/ AW√ (ii) Molecules tightly wound ✓; Strongly bonded / difficult to separate helical 'strands'√ (iii) Molecules separate ✓; 	1 2 2	Force or energy argument acceptable for (b)(ii) and (iii)
(c)	Less strongly bonded ✓ (i) Virtually all water ✓ (ii) Very few bonds between protein strands to break ✓	1	
_	Total:	8	
2 (a)	70 kJ mol ⁻¹ = 70 × 10 ³ /6.0 × 10 ²⁸ J per molecule ✓m = 1.17 × 10 ⁻¹⁹ J / molecule ≈1.2 × 10 ⁻¹⁹ J / molecule ✓e	2	Must have 1.17×10 ⁻¹⁹ J for second mark
(b)	ora (i) kT is an energy, in J ✓; so E/kT is dimensionless AW ✓ (ii) At 500 K, E =15kT while at 255 K, E =30kT ✓; Only processes with 15 <e an="" appreciable="" at="" aw✓<="" happen="" kt<30="" rate="" td=""><td>2</td><td>'Argument of e must be dimensionless' gets ✓ only E/kT not big enough at 255 K would gain ✓ only</td></e>	2	'Argument of e must be dimensionless' gets ✓ only E/kT not big enough at 255 K would gain ✓ only
(c)	 (i) Ratio of f_B = 7.51 × 10⁻¹¹/3.95 × 10⁻¹¹=1.90 √m; ≈ 2 so rate is roughly doubled √ (ii) reaction rate depends on number of molecules having enough energy to react √; Boltzmann factor gives fraction of molecules with enough 		Ora e.g. 'should be doubled =7.9× 10 ⁻¹¹ at 373 K which is close'
	energy / Total:	10	
3 (a)	Alcohol would boil/ could not read thermometer in food	1	Anything plausible
(b)	The second secon	1	
(c)	Gradient not constant ✓ ; Show/ calculate that emf < 1.25 V ✓	2	'May' allows correction e.g. with lookup table
(d)	the state of the s	2	
	Total:	6	

Qn	Expected Answers	Marks	Additional guidance
4 (a)	 (i) decreases because field lines further apart √ (ii) E_{k max} = 4000×1.6×10⁻¹⁹ J =6.4×10⁻¹⁶ J ≈ 6 × 10⁻¹⁶ J √m√e 	1	Can use 6.4×10 ⁻¹⁶ J to
	(iii) 650/6 × 10 ⁻¹⁶ J = 1.1×10 ¹⁸ s ⁻¹ /m/e	2	get 1.0×10 ¹⁸ s ⁻¹ in (iii)
	(iv) Energy not all converted to useful output	2 2 1	(iv) must refer to
(b)	Arrow perpendicular to electron path√; Arrow to right✓	2	energy. Inward arrow which is not perpendicular gets one ✓
(c)	On charge q moving at velocity v in field B✓ (ii) Centripetal force/ force needed ✓ ;	2	(ii) second mark needs
	for particle to move along arc (of radius r) ✓ (iii) Electron starts slow and accelerates/electron gains kinetic energy, so v increases ✓;	2	equation to be related to this situation (iii) increased
	v ∝ r (equation 2), so as v increases, r increases ✓	2	momentum not enough for second mark
.	Total:	14	
5 (a)	High resistance means low conductance/vice versa ✓; high conductance base corresponds to low resistance in electrical circuit✓	2	First mark can be stated or implied
(b)	p.d. = ΔT shared between two different resistances and bigger resistance = egg takes bigger share \checkmark ; so T at base of egg (Y) is close to T of pan (X) \checkmark	2	Can use constant current and Ohm's Law
(c)	Temperature at Y close to that at X ✓ ; At high temperatures, carbonisation takes place/molecules split up completely/AW ✓	2	
	Total:	6	
6 (a)	$E = hf = 6.63 \times 10^{-34} \times 2.45 \times 10^{9} \text{ J}$ $= 1.62 \times 10^{-24} \text{ J} \approx 2 \times 10^{-24} \text{ /m/e}$	2	Must calculate E to at least 2 sf to show this
	(i) Constant ratio of adjacent/equally spaced values 🗸	1	19/24=0.79,15/19=0.79
	(ii) Test applied to ≥ 2 pairs ✓ conclusion (yes) ✓	2	12/15=0.80,10/12=0.83 15/24=0.63,10/15=0.67
76	(iii) Use of repeated ratio appropriately to get 1.5 – 1.7✓	1	
(c)	Microwaves absorbed more as they penetrate√; intensity lower as you go further in ✓	2	_===
	Total:	8	

Qn	Expected Answers	Marks	Additional guidance
7 (a)	$c=f\lambda \checkmark$; $\lambda = c/f = 3.00 \times 10^8/2.45 \times 10^8 \text{ m} = 0.122 \text{ m} \approx 12 \text{ cm} \checkmark \text{s} \checkmark \text{e}$	3	
(b)	Reflect✓	1	
(c)	Whole number of node-node loops√; 6 loops√	2	Must be 'loopy' and not just a travelling wave
	Total:	6	
8 (a)	(i) $\rho_{Ceres} = 8.7 \times 10^{20}/4.3 \times 10^{17} = 2000 \text{ kg m}^{-3} \checkmark$; $\rho_{Vesta} = 3.0 \times 10^{20}/7.8 \times 10^{17} = 3800 \text{ kg m}^{-3} \checkmark$ (ii) Densities differ (significantly) so different materials \checkmark	2	Sfe penalty here for >3 sig figs.
(b)	(i) Using $T=2\pi r/v\checkmark$; $\frac{2\pi r}{v} = \frac{2\pi r}{\sqrt{GM/r}} = \sqrt{4\pi^2 r^2} \sqrt{\frac{r}{GM}} = \sqrt{\frac{4\pi^2 r^3}{GM}} \checkmark m\checkmark e$ (ii) $T\uparrow \Rightarrow r\uparrow \Rightarrow v\downarrow$ so Vesta is faster as T is smaller $\checkmark m\checkmark e$	3 2	Must relate T to v for second mark in (ii)
(c)	$T = \sqrt{\frac{4\pi^2 r^3}{GM}} = \sqrt{\frac{4\pi^2 (35000)^3}{6.67 \times 10^{-11} \times 6.69 \times 10^{15}}} \text{ s } \checkmark \text{s}$ = 61600 s = 17.1 hours ≈ nearly a day \checkmark e	2	
(d)	 (i) t = d/c = 3×10¹¹/3.0×10⁸ = 1000 s√ (ii) control from Earth not possible √; because of large (2000 s) round-trip time for signals √ 	3	
(e)		3	Using 120 594 instead of 10 576 is OK in (ii), ⇒964752 bits, 96000 s Ignore sfe in (ii)
_	Total:	17	
9 (a)	k=F/x=4.0 N/0.10 m = 40 N m ⁻¹ ✓	1	
(b)	 (i) F∝x as above ✓; a∝F by Newton II ✓ (ii) a in opposite direction to x ✓; reference to vector nature ✓ 	2 2	
(c)	0.7 s ≤ T ≤ 1.0 s✓	1	Graph gives 0.92 s
(d)		2 1 2	Second mark in (iii) could be for explaining why smaller Δt is better.
	Total:	11	
	Quality of Written Communication	4	